Annette Heinz : This Is An Un Official Fan Site Tribute
Annette Hines
Porn Queen Actress Superstar


Annette Heinz

Movie Title Year Distributor Notes Rev Formats Brooke Does College 1984 VCA O BurleXXX 1984 VCA Casting Couch 1983 Collector's Video Facial 1 DRO Consenting Adults 1982 Video-X-Pix NonSex DRO Dangerous Stuff 1985 Command Video O Down And Out In New York City 1986 Essex Video / Electric Hollywood 1 Firebox 1986 Video-X-Pix DRO G Strings 1984 Command Video O Getting Ahead 1983 VCA Anal O Hot Lips 1984 VCA LezOnly 1 O Hypersexuals 1984 VCA BJOnly Facial DO Junkyard Susie 1987 Alpha Blue Archives Lady Lust 1983 Caballero Home Video NonSex DO Parted Lips 1986 Video-X-Pix DRO
Piggies 1983 VCA Pink Clam 1986 Red Light Video Swallow 2 DRO Pleasure Channel 1984 VCA Public Affairs 1983 Caballero Home Video Anal 1 DRO Pussycat Galore 1984 Arrow Productions Facial O Rimshot 1987 CDI Home Video DRO Romancing the Bone 1984 VCA Anal Clip O Scenes They Wouldn't Let Me Shoot 1984 VCA Sex Spa USA 1984 VCA O Show Your Love 1983 VCA LezOnly O Succulent 1984 Video-X-Pix DRO Teaser 1986 Video-X-Pix Facial O Three Daughters 1986 Femme Productions 1 DRO Throat 12 Years After 1984 VCA Anal Facial 4 DO Whose Fantasy is This Anyway 1983 AVC Anal Facial



point of 171 °C (340 °F). Commercial isotactic PP has a melting point that ranges from 160 to 166 °C (320 to 331 °F), depending on atactic material and crystallinity. Syndiotactic PP with a crystallinity of 30% has a melting point of 130 °C (266 °F).[9] Below 0 °C, PP becomes brittle.[10] The thermal expansion of polypropylene is very large, but somewhat less than that of polyethylene.[10] Chemical properties Polypropylene at room temperature is resistant to fats and almost all organic solvents, apart from strong oxidants. Non-oxidizing acids and bases can be stored in containers made of PP. At elevated temperature, PP can be dissolved in nonpolar solvents such as xylene, tetralin and decalin. Due to the tertiary carbon atom PP is chemically less resistant than PE (see Markovnikov rule).[11] Most commercial polypropylene is isotactic and has an intermediate level of crystallinity between that of low-density polyethylene (LDPE) and high-density polyethylene (HDPE). Isotactic & atactic polypropylene is soluble in p-xylene at 140 °C. Isotactic precipitates when the solution is cooled to 25 °C and atactic portion remains soluble in p-xylene. The melt flow rate (MFR) or melt flow index (MFI) is a measure of molecular weight of polypropylene. The measure helps to determine how easily the molten raw material will flow during processing. Polypropylene with higher MFR will fill the plastic mold more easily during the injection or blow-molding production process. As the melt flow increases, however, some physical properties, like impact strength, will decrease. There are three general types of polypropylene: homopolymer, random copolymer, and block copolymer. The comonomer is typically used with ethylene. Ethylene-propylene rubber or EPDM added to polypropylene homopolymer increases its low temperature impact strength. Randomly polymerized ethylene monomer added to polypropylene homopolymer decreases the polymer crystallinity, lowers the melting point and makes the polymer more transparent. Molecular structure – tacticity Polypropylene tacticity de.svg Polypropylene can be categorized as atactic polypropylene (PP-at), syndiotactic polypropylene (PP-st) and isotactic polypropylene (PP-it). In case of atactic polypropylene, the methyl group (-CH3) is randomly aligned, alternating (alternating) for syndiotactic polypropylene and evenly for isotactic polypropylene. This has an impact on the crystallinity (amorphous or semi-crystalline) and the thermal properties (expressed as glass transition point Tg and melting point Tm). The term tacticity describes for polypropylene how the methyl group is oriented in the polymer chain. Commercial polypropylene is usually isotactic. This article therefore always refers to isotactic polypropylene, unless stated otherwise. The tacticity is usually indicated in percent, using the isotactic index (according to DIN 16774). The index is measured by determining the fraction of the polymer insoluble in boiling heptane. Commercially available polypropylenes usually have an isotactic index between 85 and 95%. The tacticity effects the polymers physical properties. As the methyl group is in isotactic propylene consistently located at the same side, it forces the macromolecule in a helical shape, as also found in starch. An isotactic structure leads to a semi-crystalline polymer. The higher the isotacticity (the isotactic fraction), the greater the crystallinity, and thus also the softening point, rigidity, e-modulus and hardness.[12]:22 Atactic polypropylene, on the other hand, lacks any regularity which makes it unable to crystallize and amorphous. Crystal structure of polypropylene Isotactic polypropylene has a high degree of crystallinity, in industrial products 30–60%. Syndiothactic polypropylene is slightly less crystalline, atactic PP is amorphous (not crystalline).[13]:251 Isotactic polypropylene (iPP) Isotactic polypropylene can exist in various crystalline modifications which differ by the molecular arrangement of the polymer chains. The crystalline modifications are categorized into the a-, ß- and ?-modification as well as mesomorphic (smectic) forms.[14] The a-modification is predominant in iPP. Such crystals are built from lamellae in the form of folded chains. A characteristic anomaly is that the lamellae are arranged in the so-called "cross-hatched" structure.[15] The melting point of a-crystalline regions is given as 185[16][17] to 220 °C,[16][18] the density as 0.936 to 0.946 g·cm-3.[19][20] The ß-modification is in comparison somewhat less ordered, as a result of which it forms faster[21][22] and has a lower melting point of 170 to 200 °C.[16][23][24][18] The formation of the ß-modification can be promoted by nucleating agents, suitable temperatures and shear stress.[21][25] The ?-modification is hardly formed under the conditions used in industry and is poorly understood. The mesomorphic modification, however, occurs often in industrial processing, since the plastic is usually cooled quickly. The degree of order of the mesomorphic phase ranges between the crystalline and the amorphous phase, its density is with 0.916 g·cm-3 comparatively. The mesomorphic phase is considered as cause for the transparency in rapidly cooled films (due to low order and small crystallites).[13] Syndiotactic polypropylene (sPP) Syndiotactic polypropylene was discovered much later than isotactic PP and could only be prepared by using metallocene catalysts. Syndiotactic PP has a lower melting point, with 161 to 186 °C, depending on the degree of tacticity.[26][27][28] Atactic polypropylene (aPP) Atactic polypropylene is amorphous and has therefore no crystal structure. Due to its lack of crystallinity, it is readily soluble even at moderate temperatures, which allows to separate it as by-product from isotactic polypropylene by extraction. However, the aPP obtained this way is not completely amorphous but can still contain 15% crystalline parts. Atactic polypropylene can also be produced selectively using metallocene catalysts, atactic polypropylene produced this way has a considerably higher molecular weight.[13] Atactic polypropylene has lower density, melting point and softening temperature than the crystalline types and is tacky and rubber-like at room temperature. It is a colorless, cloudy material and can be used between -15 and +120 °C. Atactic polypropylene is used as a sealant, as an insulating material for automobiles and as an additive to bitumen.[29] Copolymers Polypropylene copolymers are in use as well. A particularly important one is polypropylene random copolymer (PPR or PP-R), a random copolymer with polyethylene used for plastic pipework. PP-RCT Polypropylene random cristallinity temperature (PP-RCT), also used for plastic pipework, is a new form of this plastic. It achieves higher strength at high temperature by ß-crystallization.[30] Degradation Effect of UV exposure on polypropylene rope Polypropylene is liable to chain degradation from exposure to temperatures above 100 °C. Oxidation usually occurs at the tertiary carbon centers leading to chain breaking via reaction with oxygen. In external applications, degradation is evidenced by cracks and crazing. It may be protected by the use of various polymer stabilizers, including UV-absorbing additives and anti-oxidants such as phosphites (e.g. tris(2,4-di-tert-butylphenyl)phosphite) and hindered phenols, which prevent polymer degradation.[1] Microbial communities isolated from soil samples mixed with starch have been shown to be capable of degrading polypropylene.[31] Polypropylene has been reported to degrade while in human body as implantable mesh devices. The degraded material forms a tree bark-like layer at the surface of mesh fibers.[32] Optical properties PP can be made translucent when uncolored but is not as readily made transparent as polystyrene, acrylic, or certain other plastics. It is often opaque or colored using pigments. Production Polypropylene is produced by the chain-growth polymerization of propene: Polypropylène.png The industrial production processes can be grouped into gas phase polymerization, bulk polymerization and slurry polymerization. All state-of-the-art processes use either gas-phase or bulk reactor systems.[33] In gas-phase and slurry-reactors, the polymer is formed around heterogeneous catalyst particles. The gas-phase polymerization is carried out in a fluidized bed reactor, propene is passed over a bed containing the heterogeneous (solid) catalyst and the formed polymer is separated as a fine powder and then converted into pellets. Unreacted gas is recycled and fed back into the reactor. In bulk polymerization, liquid propene acts as a solvent to prevent the precipitation of the polymer. The polymerization proceeds at 60 to 80 °C and 30–40 atm are applied to keep the propene in the liquid state. For the bulk polymerization, typically loop reactors are applied. The bulk polymerization is limited to a maximum of 5% ethene as comonomer due to a limited solubility of the polymer in the liquid propene. In the slurry polymerization, typically C4–C6 alkanes (butane, pentane or hexane) are utilized as inert diluent to suspend the growing polymer particles. Propene is introduced into the mixture as a gas. The properties of PP are strongly affected by its tacticity, the orientation of the methyl groups (CH 3) relative to the methyl groups in neighboring monomer units (see above). The tacticity of polypropylene can be chosen by the choice of an appropriate catalyst. Catalysts The properties of PP are strongly affected by its tacticity, the orientation of the methyl groups (CH 3 in the figure) relative to the methyl groups in neighboring monomer units. A Ziegler–Natta catalyst is able to restrict linking of monomer molecules to a specific orientation, either isotactic, when all methyl groups are positioned at the same side with respect to the backbone of the polymer chain, or syndiotactic, when the positions of the methyl groups alternate. Commercially available isotactic polypropylene is made with two types of Ziegler-Natta catalysts. The first group of the catalysts encompasses solid (mostly supported) catalysts and certain types of soluble metallocene catalysts. Such isotactic macromolecules coil into a helical shape; these helices then line up next to one another to form the crystals that give commercial isotactic polypropylene many of its desirable properties. A ball-and-stick model of syndiotactic polypropylene. Another type of metallocene catalysts produce syndiotactic polypropylene.[26] These macromolecules also coil into helices (of a different type) and crystallize. Atactic polypropylene is an amorphous rubbery material. It can be produced commercially either with a special type of supported Ziegler-Natta catalyst or with some metallocene catalysts. Modern supported Ziegler-Natta catalysts developed for the polymerization of propylene and other 1-alkenes to isotactic polymers usually use TiCl 4 as an active ingredient and MgCl 2 as a support.[34][35][36] The catalysts also contain organic modifiers, either aromatic acid esters and diesters or ethers. These catalysts are activated with special cocatalysts containing an organoaluminum compound such as Al(C2H5)3 and the second type of a modifier. The catalysts are differentiated depending on the procedure used for fashioning catalyst particles from MgCl2 and depending on the type of organic modifiers employed during catalyst preparation and use in polymerization reactions. Two most important technological characteristics of all the supported catalysts are high productivity and a high fraction of the crystalline isotactic polymer they produce at 70–80 °C under standard polymerization conditions. Commercial synthesis of isotactic polypropylene is usually carried out either in the medium of liquid propylene or in gas-phase reactors. Commercial synthesis of syndiotactic polypropylene is carried out with the use of a special class of metallocene catalysts. They employ bridged bis-metallocene complexes of the type bridge-(Cp1)(Cp2)ZrCl2 where the first Cp ligand is the cyclopentadienyl group, the second Cp ligand is the fluorenyl group, and the bridge between the two Cp ligands is -CH2-CH2-, >SiMe2, or >SiPh2.[37] These complexes are converted to polymerization catalysts by activating them with a special organoaluminum cocatalyst, methylaluminoxane (MAO).[38] Industrial processes Traditionally, three manufacturing processes are the most representative ways to produce polypropylene.[39] Hydrocarbon slurry or suspension: Uses a liquid inert hydrocarbon diluent in the reactor to facilitate transfer of propylene to the catalyst, the removal of heat from the system, the deactivation/removal of the catalyst as well as dissolving the atactic polymer. The range of grades that could be produced was very limited. (The technology has fallen into disuse). Bulk slurry (or bulk): Uses liquid propylene instead of liquid inert hydrocarbon diluent. The polymer does not dissolve into a diluent, but rather rides on the liquid propylene. The formed polymer is withdrawn and any unreacted monomer is flashed off. Gas phase: Uses gaseous propylene in contact with the solid catalyst, resulting in a fluidized-bed medium. Manufacturing from polypropylene Melting process of polypropylene can be achieved via extrusion and molding. Common extrusion methods include production of melt-blown and spun-bond fibers to form long rolls for future conversion into a wide range of useful products, such as face masks, filters, diapers and wipes. The most common shaping technique is injection molding, which is used for parts such as cups, cutlery, vials, caps, containers, housewares, and automotive parts such as batteries. The related techniques of blow molding and injection-stretch blow molding are also used, which involve both extrusion and molding. The large number of end-use applications for polypropylene are often possible because of the ability to tailor grades with specific molecular properties and additives during its manufacture. For example, antistatic additives can be added to help polypropylene surfaces resist dust and dirt. Many physical finishing techniques can also be used on polypropylene, such as machining. Surface treatments can be applied to polypropylene parts in order to promote adhesion of printing ink and paints. Expanded Polypropylene (EPP) has been produced through both solid and melt state processing. EPP is manufactured using melt processing with either chemical or physical blowing agents. Expansion of PP in solid state, due to its highly crystalline structure, has not been successful. In this regard, two novel strategies were developed for expansion of PP. It was observed that PP can be expanded to make EPP through controlling its crystalline structure or through blending with other polymers.[40][41] Biaxially oriented polypropylene (BOPP) When polypropylene film is extruded and stretched in both the machine direction and across machine direction it is called biaxially oriented polypropylene. Biaxial orientation increases strength and clarity.[42] BOPP is widely used as a packaging material for packaging products such as snack foods, fresh produce and confectionery. It is easy to coat, print and laminate to give the required appearance and properties for use as a packaging material. This process is normally called converting. It is normally produced in large rolls which are slit on slitting machines into smaller rolls for use on packaging machines. Applications Polypropylene lid of a Tic Tac box, with a living hinge and the resin identification code under its flap As polypropylene is resistant to fatigue, most plastic living hinges, such as those on flip-top bottles, are made from this material. However, it is important to ensure that chain molecules are oriented across the hinge to maximise strength. Polypropylene is used in the manufacturing of piping systems, both ones concerned with high purity and ones designed for strength and rigidity (e.g., those intended for use in potable plumbing, hydronic heating and cooling, and reclaimed water).[43] This material is often chosen for its resistance to corrosion and chemical leaching, its resilience against most forms of physical damage, including impact and freezing, its environmental benefits, and its ability to be joined by heat fusion rather than gluing.[44][45][46] A polypropylene chair Many plastic items for medical or laboratory use can be made from polypropylene because it can withstand the heat in an autoclave. Its heat resistance also enables it to be used as the manufacturing material of consumer-grade kettles[citation needed]. Food containers made from it will not melt in the dishwasher, and do not melt during industrial hot filling processes. For this reason, most plastic tubs for dairy products are polypropylene sealed with aluminum foil (both heat-resistant materials). After the product has cooled, the tubs are often given lids made of a less heat-resistant material, such as LDPE or polystyrene. Such containers provide a good hands-on example of the difference in modulus, since the rubbery (softer, more flexible) feeling of LDPE with respect to polypropylene of the same thickness is readily apparent. Rugged, translucent, reusable plastic containers made in a wide variety of shapes and sizes for consumers from various companies such as Rubbermaid and Sterilite are commonly made of polypropylene, although the lids are often made of somewhat more flexible LDPE so they can snap onto the container to close it. Polypropylene can also be made into disposable bottles to contain liquid, powdered, or similar consumer products, although HDPE and polyethylene terephthalate are commonly also used to make bottles. Plastic pails, car batteries, wastebaskets, pharmacy prescription bottles, cooler containers, dishes and pitchers are often made of polypropylene or HDPE, both of which commonly have rather similar appearance, feel, and properties at ambient temperature. A diversity of medical devices are made from PP.[47] Polypropylene items for laboratory use, blue and orange closures are not made of polypropylene. A common application for polypropylene is as biaxially oriented polypropylene (BOPP). These BOPP sheets are used to make a wide variety of materials including clear bags. When polypropylene is biaxially oriented, it becomes crystal clear and serves as an excellent packaging material for artistic and retail products. Polypropylene, highly colorfast, is widely used in manufacturing carpets, rugs and mats to be used at home.[48] Polypropylene is widely used in ropes, distinctive because they are light enough to float in water.[49] For equal mass and construction, polypropylene rope is similar in strength to polyester rope. Polypropylene costs less than most other synthetic fibers. Polypropylene is also used as an alternative to polyvinyl chloride (PVC) as insulation for electrical cables for LSZH cable in low-ventilation environments, primarily tunnels. This is because it emits less smoke and no toxic halogens, which may lead to production of acid in high-temperature conditions. Polypropylene is also used in particular roofing membranes as the waterproofing top layer of single-ply systems as opposed to modified-bit systems. Polypropylene is most commonly used for plastic moldings, wherein it is injected into a mold while molten, forming complex shapes at relatively low cost and high volume; examples include bottle tops, bottles, and fittings. It can also be produced in sheet form, widely used for the production of stationery folders, packaging, and storage boxes. The wide color range, durability, low cost, and resistance to dirt make it ideal as a protective cover for papers and other materials. It is used in Rubik's Cube stickers because of these characteristics. The availability of sheet polypropylene has provided an opportunity for the use of the material by designers. The light-weight, durable, and colorful plastic makes an ideal medium for the creation of light shades, and a number of designs have been developed using interlocking sections to create elaborate designs. Polypropylene sheets are a popular choice for trading card collectors; these come with pockets (nine for standard-size cards) for the cards to be inserted and are used to protect their condition and are meant to be stored in a binder. Expanded polypropylene (EPP) is a foam form of polypropylene. EPP has very good impact characteristics due to its low stiffness; this allows EPP to resume its shape after impacts. EPP is extensively used in model aircraft and other radio controlled vehicles by hobbyists. This is mainly due to its ability to absorb impacts, making this an ideal material for RC aircraft for beginners and amateurs. Polypropylene is used in the manufacture


nude bikini pics clinton photos chelsea pictures desnuda fotos naked laura porn free porno fan and linda video site lisa kelly playboy topless lolo joan xxx official sex traci ferrari lords eva photo the nue tube pic videos sexy smith ana leah welch lovelace you remini club loren giacomo karen elizabeth carangi fake julia trinity ava kate fenech dana pozzi images gallery edwige moana victoria kristel joanna pornstar foto sylvia rachel pamela principal clips movies lauren shania valerie fabian collins nia rio del robin rhodes hart jane stevens measurements susan taylor jenny sanchez moore lane antonelli lancaume nancy roselyn emily hartley boobs brooke angie kim web demi bonet carrie allen grant hot esther deborah with braga jones fansite yates freeones
lee heather tina inger severance christina louise lopez gina wallpaper nacked ann film nackt fisher carey corinne shue ass vancamp clery model shannon elisabeth panties biografia angelina sofia erin monroe dazza charlene janet doris vanessa anna belinda reguera diane paula fucking scene peeples sonia shauna autopsy monica sharon patricia alicia plato bardot
melissa movie picture cynthia nicole maria star nina julie mary gemser naomi williams torrent nuda barbara twain anderson gia nudes fakes larue pussy actress upskirt san raquel jennifer tits mariah meg sandra big michelle roberts marie lumley tewes clip salma vergara jada cristal day shields cassidy sandrelli penthouse dickinson goldie nud angel brigitte drew fucked amanda shemale olivia website milano ellen ellison vidcaps hayek stone download carmen bessie swimsuit vera zeta locklear shirley anal gray cindy marilyn connie kayla sucking streep cock jensen john tiffani stockings hawn for weaver rue barrymore catherine bellucci rebecca bondage feet applegate jolie sigourney wilkinson nipples juliet revealing teresa magazine kennedy ashley what bio biography agutter wood her jordan hill com jessica pornos blowjob
lesbian nued grace hardcore regera palmer asia theresa leeuw heaton juhi alyssa pinkett rene actriz black vicky jamie ryan gillian massey short shirtless scenes maggie dreyfus lynne mpegs melua george thiessen jean june crawford alex natalie bullock playmate berry andrews maren kleevage quennessen pix hair shelley tiffany gunn galleries from russo dhue lebrock leigh fuck stefania tilton laurie russell vids bessie swimsuit vera zeta shirley locklear anal gray cindy marilyn connie kayla sucking streep cock jensen john tiffani stockings hawn for weaver rue catherine barrymore bellucci rebecca bondage feet applegate jolie george thiessen jean june crawford alex sigourney wilkinson nipples juliet revealing teresa magazine kennedy ashley what bio biography agutter jordan wood her hill com jessica pornos blowjob lesbian nued grace
hardcore regera palmer asia theresa leeuw heaton juhi alyssa pinkett rene actriz black vicky rutherford lohan winslet spungen shawnee swanson newton hannah leslie silverstone did frann wallpapers kidman louis kristy valeria lang fiorentino deanna rita hillary katie granny girls megan tori paris arquette amber sue escort chawla dorothy jessie anthony courtney shot sites kay meryl judy candice desnudo wallace gertz show teen savannah busty schneider glass thong spears young erika aniston stiles capshaw loni imagenes von myspace jena daryl girl hotmail nicola savoy
garr bonnie sexe play adriana donna angelique love actor mitchell unger sellecca adult hairstyles malone teri hayworth lynn harry kara rodriguez films welles peliculas kaprisky uschi blakely halle lindsay miranda jami jamie ryan gillian massey short scenes shirtless maggie dreyfus lynne mpegs melua natalie bullock playmate berry andrews maren kleevage quennessen pix hair shelley tiffany gunn









www.shanagrant.com

Shauna Grant The Last Porn Queen